Beyond a copy of the Internet.

We know Artificial Intelligence (AI) is coming, we see the Internet of Things (IoT) happening.


We know trains, planes and automobiles will become autonomous. This is not news. We know data is key to modern industries, we know robots will communicate, we understand and accept securing all of this will be a nightmare. The consequences of failure could be cataclysmic. I will refrain from inserting the obligatory terminator graphic here.

We also know that companies, projects and devices need to not only communicate, but they also need to share information securely. This is another issue. If nobody, including the NSA, GCHQ, Governments or large tech companies can secure the information, who can? Not only that, but the holder has a wee bit more power than they should, especially if they control access. If it’s given to third parties to control, then it gets much worse.

We need a way to share information securely and occasionally privately. This data cannot be blocked, damaged, hacked or removed from the participants whilst they are in the group. The group must decide as a group on membership, no individual should have that authority. No administrators or IT ‘experts’ should have any access to a companies critical data.

Potential Solution

With the SAFE network developers have a ton of currently untapped capability. Here I will describe one such approach (of many) that will allow all of the above systems to co-operate securely and without fear of password thefts and/or server breaches.

SAFE has multisig data types (the machinery is there, but not yet enabled), these data types are called Mutable Data (MD) and can be mutated by the owners. A possible solution quickly becomes obvious.

A conglomerate starts with one entity, this could be a person or a company.  Lets call that entity ‘A’. Now ‘A’ creates a Mutable Data item that represents the conglomerate, which we will call ‘C’. ‘C’ is a mutable data type, this is a type with a fixed address on the network. It has a fixed address, but no fixed abode, so it appears on different computers at different times. Only the network knows where the data is. This ‘C’ then can be almost anything. Some examples might be:

  1. A list of (possibly encrypted) public keys that represent each participants ‘root key’.
  2. A list of (possibly encrypted) participants.
  3. An embedded program
  4. Any data at all (endless opportunities really)

Lets take a few cases of applications for different industries. Note that this is not specific application for these industries, it’s to facilitate global collaboration. Below is a snapshot of some possibilities, but even these are likely to be superseded by more innovative and better thought out approaches. However, these examples work. Each industry will later feature in a more detailed analysis.

1: The Autonomous Vehicle Industry


Photo by Alessio Lin on Unsplash

These vehicles should obviously communicate with one another and indeed there are moves to enforce collaboration. However there’s the problem of ownership as described above, but also an issue of corruption by the industry, such as altering documents and data (to match emissions targets for example).

Potential Solution

A simple solution here (which will repeat in many cases), involves the creation of a fixed network address (via a Mutable Data item in SAFE). This will be created by a single entity, say Ford for example. To collaborate they add GM, Tesla etc. as ‘owners’ of this item. With multisig this means ownership is the majority of ‘owners’. Now we have a data item on a network that is not owned by any of the companies involved, but editable by the majority of those owners.

With each ‘owner’ the data item may contain a list of Public Keys or Companies and this list allows us to validate items signed by those keys as valid from the perspective of this conglomerate of companies. So what can the companies do now?

The companies can now create their own data types, for example, another mutable data item that contains a list of manufactured vehicles public keys. Now any vehicle added to the company list can be confirmed valid by any other vehicle (or system) and the vehicles or systems can now communicate safely, and in a way that is cryptographically guaranteed.

The communications may now be encrypted between vehicles and may even include micro-payments for services such as shared charging in the future.

2: Robotic & AI Industries


Photo by Alex Knight on Unsplash

Similarly to the above mechanism (although there might be no conglomerate or top level group involved), it would be simpler if robots followed a common route to information sharing. In this section when the reader reads ‘robots’ they must think of robots or AI networks.

The interesting thing here will be the potentially enormous quantity of information that robots could share globally. Imagine for instance that a robot maps out a room or learns CPR, or perhaps even the location of a good repair shop. Would it not be incredible (and obvious) if they could share that information securely and immutably with all the other robots across the globe?

Robots like humans will likely not know everything at all times, but instead wish to be able to tap into a much larger data set than they can hold. Importantly though they would want access to a more recently updated data set than they could hope to achieve singularly. Yes, even robots will not be omnipotent: like other species they will continue to be limited by natural laws to some degree.

There are several projects looking at ways to enable information sharing between robots, such as the recent(ish) EU project robot earth. But how do the robots know the data is from one of them and not a corrupt source? This surely will be important?!

So, here we wish robots to be sure of identity and – as with vehicles – have the ability to revoke (invalidate) such identities, or possibly even remove recent posts from the collective.

Potential Solution

A robot manufacturer can create a mutable data item. With this item each robot built will create a key-pair and the public key will be added as an owner to the Mutable Data (this can be made into a tree structure to hold billions of identities). The data element will be the location of further lists of valid robot keys, these may also be Mutable Data.

The secondary Mutable Data items above will contain many more robots keys. Each of these data items can now be thought of a mini-community. In these communities a delegate can be chosen to be one of the owners of the core Mutable Data item (i.e. the conglomerate one as above). This delegate will vote as per the groups instructions and failure to do so will mean the group (all owners) will remove that robot from the group and the community as a whole.

Now we have a mechanism where billions of robots can recognise the public keys of their peers. they can do this via any key exchange (ECDH etc.), or by using asymmetric encryption keys so they can encrypt data and communications between themselves. They can confirm the validity of any data posted (cryptographically signed by a robot) and that it is behaving as expected by the rest of the robots.

Now we have the ability for robots to learn and post results on a secure autonomous network. AI network can share neural networks suited for specific tasks, general AI may be aided in such scenarios with multiple networks that may be accessed globally and will not be able to be corrupted, whilst remaining validated at all times (many AI bots could rerun the network to prove results are legitimate). Re-enforcement learning and neuroevolution bots could share experiences from similar but not identical findings of the real world.

It could prove to be rather exciting to dive deeper into further posts. It is the sort of thinking that drove the need to create SAFE in the first place. The fact servers are unnatural and illogical is bad, but their susceptibility to corruption is much worse. These mechanisms require incorruptible networks, or at least the ability to recognise and control bad information. We need secure autonomous networks for some really exciting collaboration and advances. I would love to investigate and debate these opportunities with a wider audience. It’s not possible without this autonomous network though. This is why I’m so excited by the prospect of SAFE.

3: Healthcare industry


Photo by on Unsplash

Interesting thing about scanners and medical devices is that they don’t need to know your name!

A scanner cannot make use of your name. Today we can, at exponentially decreasing costs, decode your whole genome. Scanners for home use (see X prize tricorder prize) will improve dramatically and at increasing pace with significant cost savings.

Here’s a thought, instead of protecting medical records, why not just remove them completely?

Here’s another thought, instead of building more hospitals and staffing them, could we not let technology help, especially with ageing populations and more life extension programs working efficiently. Hospital/staff shortage could be offset with much better tools to do the job, by this I mean build testing equipment and use genomics and proteomics to reduce the need for hospitals and staff. The answer to hospital shortages, could well be to remove almost all of them, except for trauma centres and centres to provide assistance, such as maternity units etc.

With some of these ideas we could look to revolutionise healthcare and increase the health of the population with dramatically decreased budgets and much less human error. We could become much more caring and able to look after those who need help, and at the point of need, which should be the point of diagnosis and immediate delivery of solutions. With home diagnosis equipment it’s quite likely that in the future your devices could detect disease faster than you realise your antibodies are responding to it. Imagine never feeling ‘under the weather’ again?! Of course there will always be reasons to feel a bit down some days and up on other days, the human experience will always be relative to its context.

You can probably tell that I have a bit of a ‘bee in my bonnet’ on this one. It frustrates me to see people refused care, or drugs not being used due to cost. We can do better. If we could diagnose, deliver care and medication at home (ultimately we might be able to fix our own problems ourselves) then we can potentially revolutionise healthcare for everyone.

We now have the solutions above for the autonomous vehicles, robotics and AI behind us. Those tools are in our arsenal and we can proceed from here.  This is rather exciting to me and a huge win for humanity. So we know measurement devices do not know our name, we know that accurate scans can tell a lot about our current physique and detect anomalies. We know that genetic sequencing can accurately map our physical makeup and detect anomalies there. This means we could actually achieve a goal of instant medication and resolution to problems, but how do we get from here to there?

Potential Solution

We can already see how medical devices, like robots, can communicate with each other on an autonomous network such as SAFE. These devices can measure many things, including DNA, genome, fingerprints and much more. Therefore, they can link scans to identities, but they should see each ‘thing’ they scan as a unique set of atoms that are (hopefully) all connected correctly with a genome to ascertain its health. As a patient is scanned any anomaly will be treated. The treatment should be supplied or recommended by the scanner. When the treatment is applied, the scanner will scan again and be able to remember the condition and the treatment.

This gives the scanners a view of what works and what does not for the huge numbers of unique humans they’ll deal with. In short, the scanners can test treatments and measure outcomes.  With that information and the sharing mechanism described above in the AI scenario, they can take the findings from the whole human population to ensure the best possible treatment, based on massive sampling. In this manner the scans of a problem  can be combined with the relevant DNA/RNA strand to relate the scan to others of similar composition. That should mean treatments are continually improving. This continual improvement not only makes us all healthier with improved longevity, but also dramatically reduces the health budget. Hopefully that would mean health becomes universal, breaking down the gap between rich and poor, people and countries.


This post has attempted to give a tiny (minuscule) glimpse into the possibilities of autonomous, connected, non-owned data and computation capabilities. Many types of machine, intelligence and future invention could collaborate simply, freely and without corruption. There would be an initial requirement for humans to start such systems, but they should quickly become self-managing. This will mean there’s quickly zero requirement for human intervention, possibly apart from the Engineers who will provide updates as technology improves. Another post though will investigate this particular feature of autonomy in reference to data networking and beyond.

I hope this has been a useful exercise, or at least will help to probe the imagination and let us look at problems from a different perspective. In a secure and autonomous data network though, many of today’s issues simply evaporate. I certainly hope this post has challenged some people to think differently.

Posted in complex systems, MaidSafe, nature, Personal Opinion, Uncategorized

SAFE, use case. Honest data networks


Photo by Markus Spiske on Unsplash

Initially this “use case” is more like a “reuse case” to solutions that some blockchain based projects have promoted or implemented. This post will not name or directly criticise any project in the space, innovation is innovation and will always improve. We need to take step one, but we need to realise it is the first of many. I hope this post also encourages more people to dig a little deeper into this important area.

This first case I would like to discuss is where projects use a public ledger (blockchain) and claim to “publish” data and ensure its integrity, meaning it cannot be removed, edited or ignored in the future. This notion has also slipped into “private ledgers”, but in a very curious way. Let’s take a moment to explore the conundrum that covers many cases in today’s blockchain based projects.

Secure document records


Photo by Susan Yin on Unsplash

There are a few projects making use of the immutability of the blockchain in interesting ways. One such way is to “make data honest” or prevent rewriting of history, others similarly promote governance or identification services and so on.

These ideas are a huge deal actually, they could be recording land transactions, medical research and much more, but several existing projects currently fall an obvious bit short of a solution at the moment.

To be clear, I do not promote or endorse governance or identity services, just my personal opinion for now.

So what’s the problem?

These projects store a data identifier on the blockchain. This is generally a “hash” (digital fingerprint). Ignoring collisions (which are unlikely) the problem is simply “where is the data?” And therein lies the issue, the conundrum, the unspoken fact that these networks do not “make data honest” as it’s not data, it’s only hashes.

So currently these networks/projects keep data honest only if you can somehow get the data and there is the rub. The blockchain network does not secure documents. It is brilliant at public transaction data though. In fact the data is somewhere else, not where it’s apparently “secured” (on the blockchain). It’s a mean feat to market such projects as secured historical records as they clearly are not. In fact at the core these projects only publish and lock data identifiers, not data. It’s like a passport showing up for an interview instead of the actual person!

Make it SAFE

In SAFE, or any secured autonomous data network (would love to hear of others), the problem just does not make any sense. The location of the data store is the location that also secures the data.

The data is the thing that is secured. It’s hard to say this without sounding overwhelmingly obvious, but securing data means securing the actual data. Securing an identifier (hash) somewhere that the data isn’t, just will not work. So in SAFE the data is already honest. The projects in this space can use this feature to achieve their goals much more completely. Some have already said they would.

Secure data networks


Photo by Jingyi Wang on Unsplash

The next set of projects are the “decentralised networks” or “Internet 2.0 or 3.0” or whichever number is the highest in the scuttlebutt, or so it seems at times. Many go a little further than the document recording projects above, but not really. Again, many of these projects store data identifiers on a blockchain, but not the data. Many of these projects aim to compete with Amazon, dropbox and others.

This is a conundrum I really struggle to cope with. If the network is secure and the data on it is secure, then why store identifiers somewhere else on another network (blockchain)?  I really find it difficult to make sense of these dichotomies.

Incredibly from a decentralised perspective, some of these networks require a login to services using managed servers, and yes that is pretty painful. As we know these centralised points are both insecure and fail to protect our privacy. Some use clearnet (blockable, traceable etc.) services like DNS, NTP etc. I will not dive into the networks that allow service price setting by users, that again is not autonomous.

To us autonomous means truly autonomous, decentralised means truly decentralised (each requires the other). This is why it’s important to really figure out the details in projects that partially implement these concepts. We are better remaining focused on these facts instead of losing core concepts in amongst cryptic marketing messages.

Make it SAFE

So how do we “fix” these issues? An important step is to realise that if the network is secure then that’s where you store the data. It really is that simple. If the network is secure then it would also store your hashes/tokens/currency/coins, now that’s another discussion, but one that does need to happen. Adding computation to such a secure network then becomes a much simpler proposition.

To be clear, make it autonomous and then make it decentralised. Then we stand a chance of achieving security and privacy. Then we can all achieve that elusive freedom that the future demands of us.

Posted in bitcoin, MaidSafe, Personal Opinion

Data is the currency, literally!

Photo by Freddie Collins on Unsplash

In the last post, I discussed “the impossible network“, an autonomous network designed to protect the worlds people and their data.  Before moving on to use cases for such a network, I thought it required a little more clarification.

Many people have said that sounds like project … (insert many blockchain products that store data), however I think this could not be further from the case.  SAFE is an autonomous network for a start, I do not think any other project that manages private and public data claims this (private means it must provide some method of self authentication), but would love to hear of any that did. Never mind one with an inbuilt incentive mechanism.

The currency on such a network would obviously be data, but I do not mean that in some abstract sense, I am literally stating the currency in such a network is a data type. Not a separate network or an add on component, but a data type like any other on the network.  From a crypto currency perspective the network is the ledger, but in the case of SAFE that ledger is private and most certainly not an add-on, it’s an implicit function,

Another misunderstanding is related to projects that store some data identifier (e.g. hash) in a blockchain, but store the data “somewhere”. That “somewhere” could be some persons computer that they control, or some company servers etc.  This is the very thing we are supposed to be removing, Those pesky corruptible intermediaries. To us in MaidSafe this is a huge red flag and almost as bad as just not storing the data at all. If the data can be corrupted, or peoples access denied etc. then it’s simply not physically secured, there is no debate here.  If you store the data, then you have the identifier, so there is a dichotomy with those networks that is hard to reason.

SAFE stores data identifiers (in data chains) and also stores and protects the data itself, this is what farmers get paid to do. That is how we commercialise the world’s unused disk space automatically for ordinary people across the globe and provide the cheapest possible secure storage (and computation eventually) for everyone on the planet.

So if you are to remember one thing about SAFE, it is the network, not any humans, which protects our data, this includes controlling all costs, rewards, storage, access, communications and currency.

Now I will get on with use cases, I hope this makes the impossible network a bit more clear.  It sounds huge, but it’s actually much bigger than that 😉


Posted in complex systems, MaidSafe, Personal Opinion, safecoin

The Impossible Network


In recent weeks and months, the MaidSafe team have been very quietly progressing something quite amazing.  The dedication and commitment of the team is admirable, but the task is so great that we forget how huge the prospects are. Not only that we also at times forget to talk publicly about it. This will change I am sure, but in this personal blog I do intend to get the message across and try to really explain the potential here, it is quite astounding and can change our world, but it needs better understood, even by early adopters.

The Back Story

We have had several discussion in house recently about the SAFE network or the MaidSafe design. These discussion are surprising, we are thinking about what we are offering, not the vision, not the design and not the roadmap, these don’t change. The issue we have been discussing is one of perception and by extension imagination.

I had better explain this rambling introduction slightly better. As always some historical perspective helps. In 2014 we aligned with the crypto community, with similar drive and goals in many respects, however very different products and this is where the issue happens. We choose to define our goals as decentralising the Internet. Of course all the “it’s already decentralised” arguments aside it was a message we felt folk could follow. “We will do for data what bitcoin is doing for money” (again ignoring the side arguments about wealth, stores and all that jazz) was a mantra we used to drive home our message.

It worked and worked well, but with issues. Being us, we got to work, heads down, bums up designing, coding and testing. Nothing could stop us, we were and are focused on delivery of this “impossible network“. However, as society does, never letting a good message go to waste, the decentralised Internet message gathered pace and simply became overused and no longer differentiated us. Some projects even started calling miners farmers and such like, the confusion was not good for us, but we ignored it, mostly. Recently we have noticed we are actually perceived as another version of several projects. Initially we were compared to tor, BitTorrent, freenet etc. but now it’s any crypto project with storage or some networking. so there was a shift. Decentralised Internet became, use some crypto and (maybe) store data somewhere.

Not disrespecting any project here, this is our project I am thinking about and it’s, just like 2014, being considered just the same as project X, where X now is anything crypto with storage, where previously it was any project that stored stuff, regardless of crypto.  To be fair I have not deeply looked at many of these newer projects past the headlines.

So what’s the problem? Competition is great, it shows we are on the right track, or at least not going it alone. Well there is a problem and it’s our problem. The Decentralised Internet does not describe us any more, well no more than “some computer thing”. We have failed to really explain to people what MaidSafe is and what the SAFE network will be able to achieve. The interesting thing I see here is that decentralised Internet mantra used by projects that have pivoted. This shows how many projects stick this description on their products/goals even when those products change quite dramatically. Therefore it is essential we do not use an overused and frankly abused phrase to describe in a few words what we do.

Ok then what is SAFE?

pexels-photo-210158 (1)

This is the critical point, SAFE at it’s core is an “Autonomous Network“, not a set of federated servers, or owned storage locations, or identifiable nodes, but actually an autonomous network. This means no human intervention, no humans setting prices, no altering configurations to make things work, no tweaking data on disk, no altering rules of the nodes, absolutely no human intervention apart from running a piece of self configuring, self healing software. The network decides prices, rewards and how to protect data,  communications and calculations, not any human!

By the very definition of an autonomous network it must be secured against all known threats, otherwise it would not live long at all and be rendered useless almost immediately. Such threats could be collusion based Sybil attacks (people “buy” other peoples vaults etc.) as well as many DOS attacks (so no leader based consensus) have to be defended against, an example of a couple of difficult problems we had to solve. There are a great many threats and challenges, way too many to mention here. In short this is extremely difficult to achieve and naive implementations that ignore even one of these threats will certainly fail. Many answers are not in current papers, research or literature, Engineers need to just suck that up and get innovating and that’s great.

The network alone must know the user accounts, nobody else should. If you think about this, it’s critical and sounds simple, but some thought experiments will show it’s far from simple, otherwise we have intermediaries and by extension corruption. Unless the user wishes to let folk know then they are truly anonymous. The network masks IP addresses to prevent snooping. The network also balances supply of resources and demand on those resources, via “paying” a human somewhere to run this piece of software.


This autonomous network works in simulations and the wider network is being proven by running and measuring testnets and releases. This means nobody owns SAFE, nobody controls SAFE and nobody can manipulate SAFE, groups cannot collude to successfully game or attack SAFE and SAFE does what SAFE is programmed to do, protect our privacy, security and give us freedom to communicate, think privately, share privately, learn and teach others. SAFE is the network and the network is safe.

So Autonomous network, that is a mouthful and will confuse many people, what do we really mean in simple terms? Well it’s the Impossible Network, that thing that should not exist, the flying car, the self driving truck, the moon landing, it’s just the impossible network, until we make it possible. A network that secures data, communications and calculations for us all, without owners, intermediaries or third parties. Its a living thing, if you like, something we switch on and the world uses. People power the network for people and get paid for it, people read, watch movies, publish information and hopefully innovate, collaborate and further society, without borders, control or fear. That’s worth doing and is worth working very hard to achieve, however it’s complex and is very easily misunderstood. It’s also, unfortunately not easy to release in parts, autonomous means no intervention, it requires a whole working foundation. That is no easy feat, but if it was then none of us would find it interesting to work on, I certainly wouldn’t. If you want to terrify Engineers put them on projects like this, if they have integrity they will be terrified, however if they relish a challenge they will be satisfied in all the pressure and apparently impossible issues that absolutely require to be solved.

What are we doing with SAFE right now?

At this time the testnets are rolling out, Alpha 2 is a few weeks away, or may be launched before I finish this post. This is replicating current Internet based applications. This seemingly strange task is quite essential, but in some ways is difficult to do. We are forcing a very intelligent huge smart contract system to behave like a normal Internet. The reasons though are varied, but mainly allows the application developers to start on a familiar path. Then as we dive deeper the realisation that these apps (although amazing and competing globally without infrastructure costs etc.) are actually only the tip of the iceberg of possibilities. A conundrum akin to Tim Berners Lee using the internet to stick stamps on emails. In our case though it is valuable, but it is 100% a stepping stone to a much wider and probably more useful set of services that developers can create for people.

What lies between now and launch/Beta


There has been quite a bit of work on data chains which is basically a design to allow the network to validate data was stored securely and transactions happened on the real live network and was not introduced. This provides important features that are required for networks to restart and the network to  manage network partitions. Nodes can then republish data as individuals, but backed by  digitally signed proofs etc.  Data chains and disjoint sections allow a lot of features including secure message transport and more. It’s available to read about  in the RFC‘s this blog and more on implementation design of part 1 in the dev forum. We have split this task into 2 parts, Data Chains part 1 secures groups of nodes. This all happens at the routing layer and actually creates an autonomous network, although one with no data. This is Alpha 3. There is a simulation framework built that allows us to test the data chains design, here. Node ageing is also a requirement of this network and those who like to know more can read about that here. The above requires disjoint sections in the network and again that is described here for the avid reader, this particular implementation was a surprisingly mammoth task in itself, but has proven successful..

Then we add the data layer again to reintroduce user run vaults (the software people run to create the network and get paid) in Alpha 4. The data element is much more straightforward after data chains part 1 is in place.

After that it’s a lot of testing and the introduction of test safecoin. This is simply a data type on the network, so already secured. The addition is the networks contract, some will call this a “smart contract”, but the difference is the oracle is in the network and secured in the network.  Safecoin is the mechanism of tokenising the provision of resources by the network. The network measures and rewards good behaviour of nodes by allocating safecoin to such nodes that behave and have proven to have handled user requests properly.

That is the last components in the very long journey, not that they will be completed immediately, it’s many (many) months of work and testing at least. We are in a magnificent position right now though a we do not have any unanswered remaining blockers between us and launch, no huge design issues to face, just some implementation decisions. After launch the focus in the backend will be simplification and formalisation of as much of these innovations as possible.

Consequences of a true autonomous network

This is where, understanding the “Autonomous Network” really matters. The non ownership of the data storage and computation capability is vital for a future where we can actually integrate innovations and allow “ideas to have sex” much more instantly and effectively. Autonomous network(s) also allow people and companies to move from “private owned” silo’s that inevitably get hacked.  A good (probably vital for society) outcome is the invalidating of privacy as a product moving profits to providing great value, without taking control from people. This is much more lucrative, less risky and without the intrusion and fear that customers are feeling increasingly for their children these days, never mind the fines for data theft and costs/upheaval of ransom-ware etc..

Examples of how some existing technology may change (or be fixed)

  • Autonomous transport
    • Collaborating and sharing important information like accidents, road, rail or sea issues, weather etc. who owns the servers the data sits on, what if its manipulated?. Autonomous networks removes the ownership problem and allows true provable (non refutable) sharing of data. They also enforce industry wide rules that are set in code that is also tested industry wide. Autonomous networks also remove or at least vastly reduce reduce manipulation of results as well as preventing theft or false reporting of company data and industry test results (I am looking at you pharma).
  • IOT
    • As many mini compute devices appear we need to be able to share data between them, securely and (again) irrefutably. Importantly here we wish the network to spot and remove bad actors. The early network nodes that we have right now are not incentivised to operate for the benefit of us all. Providing these incentives (safecoin) means that the provision of resources to run IOT devices is rewarded, whether the “owner” benefits from the device capability at all times, or not. This alters the market significantly where devices can help others and not only the current owner. With these devices, security is important, but ensuring valid data is essential. An autonomous network can and should ensure good behaviour of nodes via node managers as described in the language of the network.
  • Home automation tools and assistants (Alexa, Google home et’ al)
    • The market and advances in home automation, including voice and video recondition amazes and also terrifies consumers. This is an area where we all know we do not wish any company knowing all that information about us. However with autonomous networks  entities create their own accounts without intermediaries, (see self authentication, a very important and simple requirement of an autonomous network) and these accounts can be used to communicate with other nodes, importantly with zero requirement to share who the node belongs to.
  • Cyber warfare or server hacking
    • Simply removing the “target” in terms of servers is a significant reduction in the attack vector of cyber warfare or industrial spying and data theft. The market for this level of security is extremely large, but autonomous networks just remove the problem and therefor are the solution. Anything else that has been tried until now is purely a cat and mouse game between black hat hackers and companies.
  • Password thefts
    • As with improving server security by removing the server,  autonomous networks like SAFE remove the requirement to store a password at all, not locally or stored on disks the we remove passwords form the network. Therefor no password theft on the network.

Of course some of these can be considered changing the status quo to a point where the above points seem like new technology. However, that would be new in our Engineering eyes, but consumers would see no difference, although they may feel safer, the end product in terms of features already exists or these improvement would be invisible to them. More importantly consumers of today’s network probably expect some of the above to already be the case, sadly though it is not and will not be without autonomous networks in my opinion.

Examples of new technology that will be possible

I have written this section and deleted it, replacing with more ideas several times now. I think it’s for another post, but readers may wish to read this whole post a few times and the linked documents and come to their own conclusions. No doubt much better ideas than I can provide will be found and the world changing products of tomorrow should be discovered this way. The worlds full of inspiring people and with the right tools and removal of infrastructure costs etc. I believe we can as a society make great use of these types of network for a safer future.

I hope this has proven to be a bit of an insight into SAFE and the potential it has. The exciting thing for me is not replacing the Internet, but removing this crazy ownership of data by large corporations. They should be providing value, not taking our privacy. I also am excited by the networks ability to ignore silly laws like weaken encryption or snoop on your customers. When we use logic to create things of beauty like this, then those silly governance issue become nothing to fear, discuss or think about. We all get on with our lives then, privately securely and we gain the freedom to communicate, collaborate and innovate all as one. Then it will get very exciting to watch the progress that will hopefully benefit every person on the planet, in one way or another.

In future posts I will attempt to break down the technical parts in a bit more detail and in addition will investigate more solid use cases, one by one.

Posted in complex systems, MaidSafe, Personal Opinion, Privacy

Data chains: what? why? how?


A chain is an image we all know. It represents strength and reliability. Bitcoin has made use of such imagery in the implementation of a blockchain. A blockchain is a chain of links where each link couples transactions (blocks of transactions) in a reliable and cryptographically secured manner.


Data chains represent, instead, links that couples together data identifiers. A data identifier is not the data. As the blockchain does not hold bitcoins a data chain does not hold data.

This post discusses an overview of data chains, there is also an RFC covering some basic use of DataChains and also a codebase to implement DataChains, as well as Data handling (recognition) and long term storage.


What use is that then? If these things hold no data then what use are they?

This is a critical question to answer and resist writing off as irrelevant, just yet. If we can be assured a transaction happened in a blockchain, then it allows us to know where a bitcoin should exist as if it were a real thing. It is the same with a data chain, if we can be sure a piece of data should exist and where it should exist. However with data chains, identified data is real (documents, videos, etc). That is, if we know these files should exist and can identify them, then we just need to get the data and validate it.With a network that both stores and validates data and their IDs, we gain a lot in efficiency and simplicity as compared to blockchains which cannot store significant amounts of data such as files. Data chains would additionally allow cross network/blockchain patterns, but one must ask why do that, duplication is not efficient?

Data handling 

Therefore if a block identifies indisputable information about a file, such as (naively) a hash of the content, then we can be presented with data and compare to a valid block. If the block says the data is recognised, then it was created by whatever mechanism the network agreed to assume responsibility for the data.

Now we can historically validate that data belongs on the network and it was paid for or otherwise accepted, i.e. it is valid network data. This is a great step, some will think, oh I can do that with XYZ, but hang on for a few minutes.

Network handling

Here, we separate from a standard one truth chain and look at chain parts, or a decentralised chain on a decentralised network. A chain where only a very small number of nodes will know of the validity of some small sets of data, but the network as a whole knows everything and all data. Ok, we can see now this is a bit different.

We need now to look again at the chain a little closer, here is another picture to help. We can see here that there seems to be links and blocks. This is an important issue to cement in our thinking.  In a blockchain for instance the link is simple (simple is good, in security the simpler the stronger in many cases).


Here though, a link is another agreement block. These links are actually a collection of names and signatures of the group who agreed on the chain at this time. Each link must contain at least a majority of the previous link members. With every change to the group then a new link is created and added to the chain. Please see the consensus overview blog for an overview of these groups and their importance.

Between these links, lie the data blocks, these represent data identifiers (hash, name, type etc.) of real data. Again these are signed by a majority of the previous link (in actual fact they can be slightly out of order as required in an out of order network, or planet 🙂 ).

Now the picture of a DataChain should be building. But how does it split into a decentralised chain?

Splitting up

The easy way here is to consider just the above chain picture, but also remember back to a xor network13706-20c, or plain binary tree, here is one as a reminder.

Remember also we have a notion of groups of nodes. So lets take a group size of 2 as an example.

The process would be:

  • Node 1 starts the network, there is a link with one member.
  • Node 2 starts and gets the chain so far (it’s small with only node1 listed). Node 1 then sends a link to node 2 signed by node 1.
  • node 2 then sends a link to node 1 signed by node 2.

So now the chain has two links, one with node 1 alone and the next with nodes 1 and 2, both signed by each other. This just continues, so no need for me to bore you here,

However, then node 4 joins and assuming all nodes have a purely even distribution (meaning 2 nodes address starts with 0 and the other two nodes address start with 1) the chain splits! two nodes go down the 0 branch and two go down the 1 branch. The chain has split, but maintains the same “genesis” block. The link with node 1 only. Between these links the data blocks are inserted as data is added (Put), edited (POST) or Deleted from the network, each data block again is signed by the majority of the previous link block (to be valid).

So as more nodes join then this process continues, with the chain splitting as the network grows (for detail see RFC and code). This allows some very powerful features, which we will not dive too deeply in but to name a few as example:

  • Nodes can be shown to exist on the network (i.e. not fake nodes).
  • Nodes can prove group membership.
  • Nodes can have a provable history on the network.
  • Nodes can restart and republish data securely that the network can agree should exist.
  • Network can react to massive churn and still recover.
  • Network can recover from complete outage.
  • Network can handle Open ledgers for publicly verifiable data.
  • Network can individually remember a transaction (so for instance a single safecoin transaction can be remembered as a receipt, at a cost though).
  • Network can handle versioning of any data type (each version is payed for though).
  • Fake nodes cannot forge themselves onto a chain without actually taking over a group (meaning they cannot be fake nodes 🙂 ).
  • As data blocks are held between verifiable links then data validity is guaranteed.
  • As data is guaranteed some nodes can hold only identifiers and not the data, or a small subset of data.
  • As not all nodes are required to store data, churn events will produce significantly less traffic as not all nodes need all data all the time.
  • The network can handle nodes of varying capabilities and use the strongest node in a group to handle the action it is strongest with (i.e. nodes with large storage, store lots, nodes with high bandwidth transfer a lot etc.).
  • Archive nodes become a simple state of a capable node that will be rewarded well in safecoin, but have to fight for its place in the group, too many reboots or missed calls and others will take its place.
  • Nodes can be measured and ranked easily by the network (important security capability)

There is a lot more this pattern allows, an awful lot more, such as massive growth or an immediate contraction in the number of nodes. It is doubtful the full capability of such a system can be quantified easily and certainly not in a single blog post like this, but now it’s time to imagine what we can do?


Moving forward we need many things to happen, these include, but are not limited to:

  1. Design in detail must be complete for phase 1 (data security and persistence)
  2. Open debates, presentations and discussion must take place.
  3. Code must be written.
  4. Code must be tested.
  5. Integration into existing system.
  6. End to End testing
  7. Move to public use.

Of these points 1, 2, 3 & 4 are ongoing right now. Point 5 requires changes to the existing SAFE routing table starting with an RFC. Point 4 will be enhanced as point 2 gets more attention and input. Point 6 is covered by community testing and point 7 is the wider community tests (i.e. Alpha stages).


Data chains would appear to be something that is a natural progression for decentralised systems. They allow data of any type, size or format to be looked after and maintained in a secure and decentralised manner. Not only the physical data itself (very important), but the validity of such data on the network.

Working on the data chains component has been pretty tough with all the other commitments a typical bleeding edge project has to face, but it looks like it has been very much worth the effort and determination.  The pattern is so simple (remember simple is good) and when I tried to tweak it for different problems I thought may happen, the chain fixed itself. So it is a very simple bit of code really, but provides incredible amount of security to a system as well as historical view of a network, republish capability etc. and all with ease. The single biggest mistake in this library/design would be to try any specialisation for any special situation, almost every time, it takes care of itself, at least so far.

This needs a large scale simulation, which we will do in MaidSafe for sure prior to user testing, but seems to provide a significant missing link from many of today’s networks and decentralised efforts. I hope others find this as useful, intriguing and interesting as I do.

We think there will be many posts depicting various aspects of this design pattern over the next while as we get the ability to explain what it offers in many areas. (i.e. when we understand it well enough to explain it easily)



Posted in Uncategorized

Introduction & Technical Overview of SAFE Consensus

The features included in decentralized networks can be quite varied based on the proposed goals of the technology. From the sharing capabilities offered by Bittorrent to user privacy enabled via To…

Source: Introduction & Technical Overview of SAFE Consensus

Posted in Uncategorized

Structuring Networks with XOR


A prerequisite to understanding the SAFE Network on a technical level, including the consensus process, requires knowledge of the underlying structure which powers it as a decentralized, autonomous system. Peer-to-peer networks can be categorised into two general types: structured and unstructured. In unstructured networks, there is no explicit organization of nodes and the process of joining and forming connections to others is random. In structured networks, like those which use a distributed hash table (DHT) such as Bittorrent or the SAFE Network, the overlay protocol includes a structure for organizing the network and makes purposeful connections to specific nodes more efficient.

One of the most widely adopted DHT’s, named Kademlia, was originally popularised through its implementation in Bittorrent’s Mainline DHT which removed dependence on central trackers for finding the locations of nodes and data stored on the network. Kademlia employs a rather simple operation called “exclusive or” (XOR) to establish…

View original post 1,574 more words

Posted in Uncategorized

Member of The Internet Defense League

Follow Metaquestions on

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,615 other followers